Multi-band Gradient Component Pattern (MGCP): A New Statistical Feature for Face Recognition

نویسندگان

  • Yimo Guo
  • Jie Chen
  • Guoying Zhao
  • Matti Pietikäinen
  • Zhengguang Xu
چکیده

A feature extraction method using multi-frequency bands is proposed for face recognition, named as the Multi-band Gradient Component Pattern (MGCP). The MGCP captures discriminative information from Gabor filter responses in virtue of an orthogonal gradient component analysis method, which is especially designed to encode energy variations of Gabor magnitude. Different from some well-known Gabor-based feature extraction methods, MGCP extracts geometry features from Gabor magnitudes in the orthogonal gradient space in a novel way. It is shown that such features encapsulate more discriminative information. The proposed method is evaluated by performing face recognition experiments on the FERET and FRGC ver 2.0 databases and compared with several state-of-the-art approaches. Experimental results demonstrate that MGCP achieves the highest recognition rate among all the compared methods, including some well-known Gabor-based methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Feature extraction for classification problems and its application to face recognition

This study investigates a new method of feature extraction for classification problems. The method is based on the independent component analysis (ICA). However, unlike the original ICA, one of the unsupervised learning methods, it is developed for classification problems by utilizing class information. The proposed method is an extension of our previous work on binary-class problems to multi-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009